Abstract

Background: Salmonella entericaserovar Choleraesuis (S.C) is a swine enteric pathogen causing paratyphoid fever, enterocolitis, and septicemia in piglets. S. C is mainly transmitted through the fecal-oral route. Vaccination is an effective strategy for preventing and controlling Salmonella infection.Results: Herein, we used CRISPR-Cas9 technology to knockout the virulence regulatory genes, rpoS, and slyA of S. C and constructed the ∆rpoS, ∆slyA, and ∆rpoS ∆slyA strains. The phenotypic characteristics of the mutant strains remained unchanged compared with the parental wild-type strain. In vivo study, unlike the wild-type strain, the ∆slyA and ∆rpoS ∆slyA strains alleviated splenomegaly, colon atrophy, and lower bacterial loads in the spleen, liver, ileum, and colon. These mutant strains survived in Peyer's patches (PPs) and mesenteric lymph nodes (MLN) for up to 15 days post-infection. Furthermore, the immunization of the ∆rpoS ∆slyA strain induced robust humoral and cellular immune responses.Conclusions: Consequently, vaccination with ∆rpoS ∆slyA conferred a high percentage of protection against lethal invasive Salmonella, specifically S. C, in mice. This study provided novel insights into the development of live-attenuated vaccines against the infection of S. C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.