Abstract

Leishmaniasis is a parasitic disease affecting over 12 million individuals worldwide. As current treatments are insufficient, the development of an effective vaccine is a priority. This study generated and assessed the efficacy of Leishmania vaccines engineered from the non-colonizing, non-pathogenic Gram-positive bacterium Lactococcus lactis. A truncated, codon-optimized version of the A2 antigen from Leishmania donovani was engineered for expression in Lactococcus lactis in three different subcellular compartments: in the cytoplasm, secreted outside the cell or anchored to the cell wall. These three A2-expressing Lactococcus lactis strains were tested for their ability to generate A2-specific immune responses and as live vaccines against visceral Leishmania donovani infection in BALB/c mice. Subcutaneous immunization with live Lactococcus lactis expressing A2 anchored to the cell wall effectively induced high levels of antigen-specific serum antibodies. It was demonstrated that Lactococcus lactis-based vaccines are a feasible approach in the generation of live vaccines against leishmaniasis. The Lactococcus lactis strains generated in this study provide an excellent foundation for further studies on live bacterial vaccines against leishmaniasis and other pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.