Abstract

Currently, both goose astrovirus (GoAstV) and goose-origin Newcastle disease virus (NDV) are widely infectious agents for goslings. There is no vaccine for GoAstV. Capsid protein can elicit a neutralizing antibody in human astroviruses (HAstV). Molecular analysis of the genomic region encoding the capsid protein(ORF2) of goose astrovirus has revealed that it contains neutralizing epitopes. Goose-origin NDV is also an infectious agent. A wide range of NDV strains exist that can be commonly used as vaccine vectors. In the present study, the fusion protein cleavage site RRQKR↓F in a backbone of the virulent goose-origin NDV SH-12 was changed into an avirulent motif GRQGR↓L. The modified goose-origin NDV recombinant vaccine virus expressing the Capsid protein (Cap) of GoAstV was generated as a bivalent vaccine using a reverse-genetics approach. The recombinant virus, rNDV/GoAstV-Cap, was attenuated and similar growth dynamics, cytopathic effects, and virus titers in vitro were maintained when compared to the LaSota strain. Expression of the GoAstV-Cap protein in rNDV/GoAstV-Cap infected cells was detected by an immunofluorescence assay and Western blotting. Goslings inoculated with rNDV/GoAstV-Cap showed no apparent signs of disease and induced GoAstV-Cap-specific immune responses and NDV-specific serum antibody responses to a LaSota vaccination control. Complete protection against a pathogenic GoAstV challenge and avelogenic NDV challenge was conferred. The results of the study suggested that rNDV/GoAstV-Cap viruses have the potential to be the safe, stable, and effective bivalent vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call