Abstract
Ultraviolet laser pulses were found to introduce and destroy point defects that play a key role in the generation of second-order optical nonlinearities by thermal poling in high-purity silica glasses. The characteristics of the generation process depended largely on not only ≡Si—OH,O2, and H2 content of the glasses but also the sequence of thermal poling and the pulse irradiation. There were two different kinds of nonlinearity: one localized in a thin layer near the sample surface (near-surface) and a bulk one spreading throughout the sample. The near-surface and bulk nonlinearities are associated with ≡Si—O- and ≡Si⋯Si≡, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.