Abstract
Cities are becoming more pedestrian-friendly, reducing traffic and promoting physical activity and walking. However, prolonged exposure to the sun can cause sunburn and skin problems, so minimizing exposure to the sun while travelling is especially relevant at certain latitudes and in the summer months. This paper proposes a method for modelling urban contours and generating pedestrian maps with the location of shaded areas and accessibility barriers. The proposed method uses as input data a point cloud of an urban environment acquired with Mobile Laser Scanning. First, the input point cloud is segmented in ground points, obstacle points, and points causing shadows. Then, the three segmented point clouds are rasterized and the corresponded images are combined to obtain the navigable ground and the shaded areas. Finally, from the navigable ground, a navigation map is generated for pedestrians. To check the usefulness of this navigation map, a pathfinding algorithm is applied. The results show a correct generation of the navigable ground, and routes prioritizing the trajectory by shadow areas. Depending on the weighting between sun and shaded areas, the routes obtained show differences in distance travelled and sun exposure. The proposed method is sensitive to the existence of obstacles and noise in the point clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.