Abstract

Although the formation of reactive oxygen species (ROS) in the skin induced by the ultraviolet (UV) light has been shown to lead to many cutaneous disorders, skin cancer and photoageing, the mechanism and distribution of ROS generation has not yet been definitively determined. In the present study, we examined the distribution of UVA-induced ROS in the skin of live hairless mice, using our proposed in vivo imaging chemiluminescent (CL) method to detect ROS combined with a CL probe (cypridina hilgendorfii luciferin analogue; CLA) and tape stripping (TS) technique. The CL intensities in the skin of live hairless mice were confirmed to significantly increase by UVA exposure. When TS was conducted five times in a maximum level after CL measurement following UVA exposure and subsequent CLA application, CL intensities due to UVA-induced ROS generation in the residual skin decreased to 10% of the original levels; and those in the stripped skin on each tape decreased in the stripped order such as 52%, 16%, 11%, 6% and 5%. Next, CLA was applied and then CL intensities were measured in the residual skin after advance 1, 3 and 5 tape strippings, and CL intensities due to ROS were detected primarily in the outer layer of the skin. On the basis of these results, we concluded that ROS induced by UVA exposure occurs and distributes in the outermost layer of the stratum corneum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call