Abstract

Welding-induced residual stresses (WIRS) can have influence on the performance and service life of the welded structures. The present study experimentally and numerically investigates the reason and mechanism behind the generation and distribution of WIRS concretely. The results show that the thermal shrinkage process and phase transformation process are the main sources generating welding-induced longitudinal residual stress (σLRS). Nevertheless, except for these two processes, the quenching process would be another source producing transverse residual stress (σTRS). In the current work, it is found that the maximum σLRS generally reaches the yield strength (σy) of base metal (BM) at ambient temperature (TRT) for both transforming and non-transforming materials but located at different areas. In the single-pass weldments without external restraint, σTRS profile on the top surface is usually always M-shaped for the non-transforming materials but W-shaped instead for the transforming materials. The distribution mechanism behind the M-shaped or W-shaped σTRS profile is systematically clarified here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.