Abstract

This paper studies the generation of the dispersive wave (DW) in the normal dispersion regimes of the birefringent photonic crystal fiber (BPCF) fabricated in this work. The remarkable blue-shifted radiation is found to be generated when 30 fs pulses are input in the normal dispersion regime of the BPCF for the first time. The characteristics of the blue-shifted DW strongly depend on the polarization of the input pulse. As a result, two peaks appear in the blue-shifted region of the spectrum when the input pulses polarize along the slow axis of the BPCF. With the increase of the center wavelength of the initial input pulse, the difference between the wavelengths of the two peaks widens. The peak location in the spectrum can be explained by the phase matching condition between the DW and the input pulse. In addition, when the input polarization is set to an angle of 45° with respect to the principal axes of the BPCF, the cross-phase modulation and coherent coupling between two orthogonally polarized modes would result in pulse trapping in the BPCF. Accordingly, the DW shift toward short wavelength is restrained. The DW generation in the normal-dispersion regimes of BPCF can be controlled by the phase matching condition and polarization of the input pulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call