Abstract

Metal nanostructures have great potential for generating and regulating structural color. In this paper, an array structure based on silver nano asymmetric coaxial cavity is designed to study the influence of ring cavity on the generation and regulation of structural color. The ordered array of asymmetric coaxial cavity is simulated by the finite difference time domain method, and the influence of structural parameters on structural color is obtained. The results show that by adjusting the depth, opening size and thickness of coaxial cavity, the rich structural colors can be produced. The experimental results and the simulation results are basically consistent with each other. Compared with the coaxial cavity with symmetrical structure, the asymmetric metal nanostructure proposed in this work has good adjustability in color display, and has potential applications in color imaging, high-resolution imaging, anti-counterfeiting, and so on.

Highlights

  • 射、吸收谱光谱图;(c, d) 在 490 nm 和 610 nm 共振波长处竖直截面的电场分布图 Fig. 2. structure and simulation: (a) single interface diagram of coaxial nano-cavity with specified geometric parameters; (b) Reflection, transmission and absorption spectra of a single asymmetric coaxial cavity with H=150 nm, R=55 nm, r=35 nm, d=10 nm, P=250 nm; (c, d) cross section electric field distributions at 490 nm and 610 nm resonance wavelengths

  • Fig. 5. structural color and spectrum contrast diagram: (a) structural color display diagram of coaxial cavity with outer radius R from70 to 100 nm; (b) Reflection spectrums of different coaxial cavity depths; (c) Contrast reflection spectra of outer radius R in coaxial cavity; (d)Color path corresponding to upper outer radius R

  • 250 nm, the structure color display diagram of coaxial cavity thickness d from 10 ~ 35 nm;;(b) structural color display diagram of coaxial cavity thickness D from 10 to 35 nm; (c) Reflection spectrums of different coaxial cavity depths; (d) Contrast reflection spectrogram of coaxial cavity thickness D;(e)Color path corresponding to thickness D

Read more

Summary

Introduction

射、吸收谱光谱图;(c, d) 在 490 nm 和 610 nm 共振波长处竖直截面的电场分布图 Fig. 2. structure and simulation: (a) single interface diagram of coaxial nano-cavity with specified geometric parameters; (b) Reflection, transmission and absorption spectra of a single asymmetric coaxial cavity with H=150 nm, R=55 nm, r=35 nm, d=10 nm, P=250 nm; (c, d) cross section electric field distributions at 490 nm and 610 nm resonance wavelengths. 基金: 中国国家自然科学基金会(批准号:61605082,61875089);江苏省自然科学基金(批准 号:BK20160969);江苏省高等学校重点学科建设项目(PAPD);国家博士后科研基金资助项目 (批准号:2017M611654);江苏省博士后科研基金(批准号:1701074B); † 通讯作者.E-mail: nihaibin@nuist.edu.cn 本文创新地研究了一种非对称的纳米共轴腔结构的色彩显示特性。通过时域 有限差分法(Finite Difference Time Domain, 简记为 FDTD)研究光谱和色彩对结构 非对称性的依赖关系,分析该结构的反射谱和共振波长对应的截面电场分布的仿 真结果,阐述了非对称结构产生结构色激发的光学模式。通过实验和仿真计算表 明,非对称共轴腔可显示大部分明亮的颜色,可潜力应用于防伪、高分辨成像、 超清彩色显示等。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call