Abstract

We present two efficient schemes for the deterministic generation and the complete nondestructive analysis of hyperentangled Bell states in both the polarization and spatial-mode degrees of freedom (DOFs) of two-photon systems, assisted by the nitrogen-vacancy (NV) centers in diamonds coupled to microtoroidal resonators as a result of cavity quantum electrodynamics (QED). With the input-output process of photons, two-photon polarization-spatial hyperentangled Bell states can be generated in a deterministic way and their complete nondestructive analysis can be achieved. These schemes can be generalized to generate and analyze hyperentangled Greenberger-Horne-Zeilinger states of multi-photon systems as well. Compared with previous works, these two schemes relax the difficulty of their implementation in experiment as it is not difficult to obtain the $\pi$ phase shift in single-sided NV-cavity systems. Moreover, our schemes do not require that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity. Our calculations show that these schemes can reach a high fidelity and efficiency with current technology, which may be a benefit to long-distance high-capacity quantum communication with two DOFs of photon systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.