Abstract

In the context of environmental and social applications, the analysis of land use and land cover (LULC) holds immense significance. The growing accessibility of remote sensing (RS) data has led to the development of LULC benchmark datasets, especially pivotal for intricate image classification tasks. This study addresses the scarcity of such benchmark datasets across diverse settings, with a particular focus on the distinctive landscape of India. The study entails the creation of patch-based datasets, consisting of 4000 labelled images spanning four distinct LULC classes derived from Sentinel-2 satellite imagery. For the subsequent classification task, three traditional machine learning (ML) models and three convolutional neural networks (CNNs) were employed. Despite facing several challenges throughout the process of dataset generation and subsequent classification, the CNN models consistently attained an overall accuracy of 90% or more. Notably, one of the ML models stood out with 96% accuracy, surpassing CNNs in this specific context. The study also conducts a comparative analysis of ML models on existing benchmark datasets, revealing higher prediction accuracy when dealing with fewer LULC classes. Thus, the selection of an appropriate model hinges on the given task, available resources, and the necessary trade-offs between performance and efficiency, particularly crucial in resource-constrained settings. The standardized benchmark dataset contributes valuable insights into the relative performance of deep CNN and ML models in LULC classification, providing a comprehensive understanding of their strengths and weaknesses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.