Abstract

BackgroundMitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease-modifying therapeutics for treating these disorders effectively. A deeper understanding of neural tissue mitochondria pathobiologies as definitive mediators of neural injury, disease, and cell death merits further study, and the development of additional tools to study neural mitochondria will help achieve this unmet need.ResultsWe created transgenic mice that express the coral (Discosoma sp.) red fluorescent protein DsRed2 specifically in mitochondria of neurons using a construct engineered with a Thy1 promoter, specific for neuron expression, to drive expression of a fusion protein of DsRed2 with a mitochondrial targeting sequence. The biochemical and histological characterization of these mice shows the expression of mitochondrial-targeted DsRed2 to be specific for mitochondria and concentrated in distinct CNS regions, including cerebral cortex, hippocampus, thalamus, brainstem, and spinal cord. Red fluorescent mitochondria were visualized in cerebral cortical and hippocampal pyramidal neurons, ventrobasal thalamic neurons, subthalamic neurons, and spinal motor neurons. For the purpose of proof of principle application, these mice were used in excitotoxicity paradigms and double transgenic mice were generated by crossing Thy1-mitoDsRed2 mice with transgenic mice expressing enhanced-GFP (eGFP) under the control of the Hlxb9 promoter that drives eGFP expression specifically in motor neurons and by crossing Thy1-mitoDsRed2 mice to amyotrophic lateral sclerosis (ALS) mice expressing human mutant superoxide dismutase-1.ConclusionsThese novel transgenic mice will be a useful tool for better understanding the biology of mitochondria in mouse and cellular models of human neurological disorders as exemplified by the mitochondrial swelling and fission seen in excitotoxicity and mouse ALS.

Highlights

  • Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson’s disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, diseasemodifying therapeutics for treating these disorders effectively

  • Mitochondria have been implicated in the pathobiology of several neurological disorders, including CharcotMarie-Tooth disease, chronic progressive external opthalmoplegia, mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes syndrome, and less directly in stroke, amyotrophic lateral sclerosis (ALS), Parkinson’s disease, and Alzheimer’s [1,2,3,4]

  • Visualization of mitochondria in living cultured neurons using mitochondrial-targeted DsRed2 To establish a pattern for recognition of DsRed-labeled mitochondria in living cells, we used the unmodified mitoDsRed2 plasmid (Clontech) to transfect mouse primary cortical neurons and motor neuron-like cells differentiated from the NSC34 cell line

Read more

Summary

Introduction

Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson’s disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, diseasemodifying therapeutics for treating these disorders effectively. Mitochondria have been implicated in the pathobiology of several neurological disorders, including CharcotMarie-Tooth disease, chronic progressive external opthalmoplegia, mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes syndrome, and less directly in stroke, amyotrophic lateral sclerosis (ALS), Parkinson’s disease, and Alzheimer’s [1,2,3,4]. Mitochondria mediate the apoptotic process in adult brain neurons by mPTP-triggered ROS and nitric oxide production after their accumulation and priming instigated by Zn2+ and Ca2+ accumulation [12]. Mitochondrial targeted drugs such as TRO19662 (olesoxime) and Bcl-XL:BH4 peptides can block apoptosis of neurons within the adult mouse CNS [12]. Mitochondria are validated important targets for the design of drugs and small molecules as neuroprotectants with potential in vivo CNS efficacy in the treatment of several neurological disorders [6,12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.