Abstract

IntroductionThe reprogramming of a patient’s somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The continued presence of potentially oncogenic transgenic elements following reprogramming, however, represents a safety concern that should be addressed prior to clinical applications. The polycistronic stem cell cassette (STEMCCA), an excisable lentiviral reprogramming vector, provides, in our hands, the most consistent reprogramming approach that addresses this safety concern. Nevertheless, most viral integrations occur in genes, and exactly how the integration, epigenetic reprogramming, and excision of the STEMCCA reprogramming vector influences those genes and whether these cells still have clinical potential are not yet known.MethodsIn this study, we used both microarray and sensitive real-time PCR to investigate gene expression changes following both intron-based reprogramming and excision of the STEMCCA cassette during the generation of human iPSCs from adult human dermal fibroblasts. Integration site analysis was conducted using nonrestrictive linear amplification PCR. Transgene-free iPSCs were fully characterized via immunocytochemistry, karyotyping and teratoma formation, and current protocols were implemented for guided differentiation. We also utilized current good manufacturing practice guidelines and manufacturing facilities for conversion of our iPSCs into putative clinical grade conditions.ResultsWe found that a STEMCCA-derived iPSC line that contains a single integration, found to be located in an intronic location in an actively transcribed gene, PRPF39, displays significantly increased expression when compared with post-excised stem cells. STEMCCA excision via Cre recombinase returned basal expression levels of PRPF39. These cells were also shown to have proper splicing patterns and PRPF39 gene sequences. We also fully characterized the post-excision iPSCs, differentiated them into multiple clinically relevant cell types (including oligodendrocytes, hepatocytes, and cardiomyocytes), and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status.ConclusionFor the first time, these studies provide a proof-of-principle for the generation of fully characterized transgene-free human iPSCs and, in light of the limited availability of current good manufacturing practice cellular manufacturing facilities, highlight an attractive potential mechanism for converting research-grade cell lines into putatively clinical-grade biologics for personalized cellular therapeutics.

Highlights

  • The reprogramming of a patient’s somatic cells back into induced pluripotent stem cells holds significant promise for future autologous cellular therapeutics

  • We found that a stem cell cassette (STEMCCA)-derived induced pluripotent stem cell (iPSC) line that contains a single integration, found to be located in an intronic location in an actively transcribed gene, pre-mRNA-processing factor 39 (PRPF39), displays significantly increased expression when compared with post-excised stem cells

  • We fully characterized the post-excision iPSCs, differentiated them into multiple clinically relevant cell types, and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status

Read more

Summary

Introduction

The reprogramming of a patient’s somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The polycistronic stem cell cassette (STEMCCA), an excisable lentiviral reprogramming vector, provides, in our hands, the most consistent reprogramming approach that addresses this safety concern. Previous research demonstrated that human somatic cells can be directly reprogrammed back into an induced pluripotent stem cell (iPSC) state through exogenous expression of a small number of transgenic factors [1]. The ability of these cells to differentiate into any human cell type highlights their promise for future autologous cellular therapies [2,3]. We and others have previously relied solely on microarray transcriptional analysis to assess the expression of genes following insertion of STEMCCA into the introns of genes [30,31]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.