Abstract
Turbulence in the plasma sheath around reentry vehicles is known to contribute to radio-communications blackout, but a practical laboratory model of that extreme environment remains elusive. Herein, we present a table-top plasma system with sustained, chaotic convection for that purpose. Strong sound waves exert acoustic radiation pressure on gradients within the plasma and are shown to drive sufficient convection to cause abrupt and chaotic variation in the plasma properties. The volume-averaged plasma conductivity and collision time are determined in real time by phase-sensitive detection of a microwave probe signal. The experiment provides unique opportunities to study transmission into plasma conditions that can inform detailed models of high-temperature turbulent flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.