Abstract

Dendritic cells (DCs) capture, internalize and process antigens leading to the induction of antigen-specific immune responses. The aim of this study was to develop, implement and characterize an efficient approach for DC-based immunization. Dendritic cells were expanded in vivo by hydrodynamic delivery of a human flt3 ligand expression plasmid. Splenic DCs were isolated and purified with magnetic beads linked to hepatitis C virus (HCV) nonstructural protein-5 (NS5), anti-CD40 and/or LPS. The DCs that contained beads were purified by passage over a magnetic column and subsequently phenotyped. Enrichment resulted in a population consisting of 80% CD11c + cells. Uptake of uncoated microparticles promoted DC maturation and the expression of CD80, CD86, and MHC-II molecules; beads coated with LPS and anti-CD40 further increased the expression of these co-stimulatory molecules, as well as the secretion of IL-12. Mice immunized subcutaneously with DCs containing beads coated with HCV NS5 protein, anti-CD40 and LPS exhibited significant antigen-specific, increases in IFN-γ-producing CD4 + T cells and CTL activity. This approach combines three critical elements necessary for efficient DC-based immunization that include DC enrichment, maturation and antigen targeting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call