Abstract

Microwave induced chemical etching (MICE) has been established as a faster and improved technique compared to other contemporary etching techniques for the development of tracks in a CR-39 detector. However, the methodology could not be applied for LET (linear energy transfer) spectrometry due to lack of a calibration curve using this method. For this purpose, a new LET calibration curve in the range of 12 keV/μm-799 keV/μm was generated considering different ions such as H, Li, C, O, and F on CR-39 having different LETs in water. An empirical relation was established from the obtained calibration curve for determining the value of LET (in water) from the value of V, the ratio of track etch rate to bulk etch rate. For application of this calibration curve in neutron dosimetry, CR-39 detectors were irradiated to neutrons generated from 120 and 142 MeV 16O+27Al systems followed by a similar MICE procedure. The absorbed dose (DLET) and the dose equivalent (HLET) were obtained from the LET spectra and were found to be 13% and 10% higher for 142 MeV 16O+27Al system than those for 120 MeV 16O+27Al system, respectively. The outcome of the study demonstrates the possibility of using the MICE technique for neutron dose estimation by CR-39 via LET spectrometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call