Abstract

Generation of quasimonoenergetic electron beams in a transitional region from the self-modulated laser wakefield to bubble acceleration regime is reported. Quasimonoenergetic electron beams containing more than 3×108 electrons in the monoenergetic peak with energies of 40–60 MeV have been obtained from a plasma with an electron density of 1.6×1019 cm−3 produced by an 8 TW, 50 fs laser pulse. The generation of quasimonoenergetic electron beams is investigated by two-dimensional particle-in-cell simulations. Few periods of the plasma wave are located inside the laser pulse, because the laser pulse duration is longer than the wavelength of the plasma wave. Electrons trapped in the first period of the plasma wave can form the monoenergetic bunch, even though the trapped electrons interact directly with the laser field. The quasimonoenergetic electron beam can be obtained due to the small contribution of the direct acceleration by the laser field. This type of monoenergetic electron acceleration is different from that of both the self-modulated laser wakefield and bubble acceleration regimes, in which the trapped electrons in the plasma wave are located behind the laser pulse due to the pulse compression or fragmentation and free from the laser electric field. This result suggests a new regime for the quasimonoenergetic electron acceleration in the region between the self-modulation and bubble regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call