Abstract

Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs) were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs) were also identified contributing to the study of A. canescens resources.

Highlights

  • Salinity is a soil condition characterized by a high concentration of soluble salts

  • In an effort to generate sequence data for A. canescens, a cDNA library was generated based on high quality RNA samples with three biological replicates (Figure S1A)

  • PCR was performed on approximately 500 colonies to investigate the average insert size, and the most abundant insert size is between 1000 and 1200 bp (Figure 1); and longer inserts were more likely to have

Read more

Summary

Introduction

Salinity is a soil condition characterized by a high concentration of soluble salts. Soil salinity stresses plants in two ways: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. All plants have evolved mechanisms to regulate salt accumulation and to select against it in favor of other nutrients commonly present in low concentrations, and to tolerate the low soil water potential caused by salinity, as well as by drought. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance; Na+ exclusion; and tissue tolerance [1]. Y.G.; Du, B.X.; Zhang, W.K.; Zhang, J.S.; Chen, S.Y. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.