Abstract
A d-dimensional simplicial mesh is a Delaunay triangulation if the circumsphere of each of its simplices does not contain any vertices inside. A mesh is well shaped if the maximum aspect ratio of all its simplices is bounded from above by a constant. It is a long-term open problem to generate well-shaped d-dimensional Delaunay meshes for a given polyhedral domain. In this paper, we present a refinement-based method that generates well-shaped d-dimensional Delaunay meshes for any PLC domain with no small input angles. Furthermore, we show that the generated well-shaped mesh has O( n) d-simplices, where n is the smallest number of d-simplices of any almost-good meshes for the same domain. Here a mesh is almost-good if each of its simplices has a bounded circumradius to the shortest edge length ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.