Abstract

For secure transmission of digital images, existing cryptographic algorithms transform coherent visual information into a noise-like appearance prompting an adversary of the presence of a possible cipher. This paper proposes an algorithm that produces a visually coherent and meaningful cipher image. The proposed algorithm consists of a permutation-substitution subroutine to obtain a partial cipher. The Arnold-3D map does the permutation, and a delayed logistic map performs the substitution in this subroutine. The hiding of this partial cipher is done in the reference image using an integer wavelet transform. The pixels of the partial cipher are embedded in the four sub-bands of the decomposed reference image as 4 to 1-pixel encoding using Cantor-like pairing function. In addition to the lossless encryption scheme, the integer nature of all the sub-bands in the wavelet decomposition and the invertible pairing function facilitates the perfect reconstruction of the reference image. One of the significant novelty of this work lies in the subtle use of simple pairing functions, which prohibits the unnecessary increase in the size of the cipher, thereby reducing the storage and transmission costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.