Abstract

Generative adversarial networks are a category of neural networks used extensively for the generation of a wide range of content. The generative models are trained through an adversarial process that offers a lot of potential in the world of deep learning. GANs are a popular approach to generate new data from random noise vector that are similar or have the same distribution as that in the training data set. The Generative Adversarial Networks (GANs) approach has been proposed to generate more realistic images. An extension of GANs is the conditional GANs which allows the model to condition external information. Conditional GANs have seen increasing uses and more implications than ever. We also propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models, a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. Our work aims at highlighting the uses of conditional GANs specifically with Generating images. We present some of the use cases of conditional GANs with images specifically in video generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.