Abstract
Fractional Brownian motion (FBM) is a random fractal that has been used to model many one-, two- and multi-dimensional natural phenomena. The increments process of FBM has a Gaussian distribution and a stationary correlation function. The fractional Gaussian process (FGp) algorithm is an exact algorithm to simulate Gaussian processes that have stationary correlation functions. The approximate second partial derivative of two-dimensional FBM, called 2D fractional Gaussian noise, is found to be a stationary isotropic Gaussian process. In this paper, the expected correlation function for 2D fractional Gaussian noise is derived. The 2D FGp algorithm is used to simulate the approximate second partial derivative of 2D FBM (FBM2) which is then numerically integrated to generate 2D fractional Brownian motion (FBM2). Ensemble averages of surfaces simulated by the FGp2 algorithm show that the correlation function and power spectral density have the desired properties of 2D fractional Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.