Abstract

We apply reinforcement learning (RL) to generate fine regular star triangulations of reflexive polytopes, that give rise to smooth Calabi-Yau (CY) hypersurfaces. We demonstrate that, by simple modifications to the data encoding and reward function, one can search for CYs that satisfy a set of desirable string compactification conditions. For instance, we show that our RL algorithm can generate triangulations together with holomorphic vector bundles that satisfy anomaly cancellation and poly-stability conditions in heterotic compactification. Furthermore, we show that our algorithm can be used to search for reflexive subpolytopes together with compatible triangulations that define fibration structures of the CYs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.