Abstract
This chapter considers the Dehn–Lickorish theorem, which states that when g is greater than or equal to 0, the mapping class group Mod(Sɡ) is generated by finitely many Dehn twists about nonseparating simple closed curves. The theorem is proved by induction on genus, and the Birman exact sequence is introduced as the key step for the induction. The key to the inductive step is to prove that the complex of curves C(Sɡ) is connected when g is greater than or equal to 2. The simplicial complex C(Sɡ) is a useful combinatorial object that encodes intersection patterns of simple closed curves in Sɡ. More detailed structure of C(Sɡ) is then used to find various explicit generating sets for Mod(Sɡ), including those due to Lickorish and to Humphries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.