Abstract

The origin of the matter-antimatter asymmetry of the universe is one of the major unsolved problems in cosmology and particle physics. In this paper, we investigate the recently proposed possibility that split fermion models -- extra dimensional models where the standard model fermions are localized to different points around the extra dimension -- could provide a means to generate this asymmetry during the phase transition of the localizing scalars. After setting up the scenario that we consider, we use a single fermion toy model to estimate the reflection coefficients for scattering off the phase boundary using a more realistic scalar profile than previous work resulting in a different Kaluza Klein spectrum. The value we calculate for $n_B/s$ is consistent with the mechanism being the source of the baryon asymmetry of our universe provided the $B-L$ violating processes have an efficiency of order $10^{-5}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.