Abstract

Global quantum networks will benefit from the reliable fabrication and control of high-performance solid-state telecom photon-spin interfaces. T radiation damage centres in silicon provide a promising photon-spin interface due to their narrow O-band optical transition near 1326 nm and long-lived electron and nuclear spin lifetimes. To date, these defect centres have only been studied as ensembles in bulk silicon. Here, we fabricate high concentration T centre ensembles in the 220 nm device layer of silicon-on-insulator wafers by ion implantation and subsequent annealing. We then develop a method that uses spin-dependent optical transitions to benchmark the characteristic optical spectral diffusion within these T centre ensembles. Using this new technique, we show that with minimal optimization to the fabrication process high densities of implanted T centres localized ≲100 nm from an interface display ∼1 GHz characteristic levels of total spectral diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call