Abstract
We propose a method to exactly generate Brownian paths x c (t) that are constrained to return to the origin at some future time t f , with a given fixed area under their trajectory. We derive an exact effective Langevin equation with an effective force that accounts for the constraint. In addition, we develop the corresponding approach for discrete-time random walks, with arbitrary jump distributions including Lévy flights, for which we obtain an effective jump distribution that encodes the constraint. Finally, we generalise our method to other types of dynamical constraints such as a fixed occupation time on the positive axis or a fixed generalised quadratic area .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.