Abstract
Accurately detecting single trees from LiDAR data requires generating a high-resolution Digital Surface Model (DSM) that faithfully represents the uppermost layer of the forest canopy. A high-resolution DSM raster is commonly generated by interpolating all first LiDAR returns through a Delaunay TIN. The first-return 2D surface interpolation struggles to produce a faithful representation of the canopy when there are first returns that have very similar x-y coordinates but very different z values. When triangulated together into a TIN, such constellations will form needle-shaped triangles that appear as spikes that geometrically disrupt the DSM and negatively affect treetop detection and subsequent extraction of biophysical parameters. We introduce a spike-free algorithm that considers all returns (e.g. also second and third returns) and systematically prevents spikes formation during TIN construction by ignoring any return whose insertion would result in a spike. Our algorithm takes a raw point cloud (i.e., unclassified) as input and produces a spike-free TIN as output that is then rasterized onto a corresponding pit-free DSM grid. We evaluate the new algorithm by comparing the results of treetop detection using the pit-free DSM with those achieved using a common first-return DSM. The results show that our algorithm significantly improves the accuracy of treetop detection, especially for small trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.