Abstract
Let $F$ be a probability distribution with support on the non-negative integers. Four methods for generating a simple undirected graph with (approximate) degree distribution $F$ are described and compared. Two methods are based on the so called configuration model with modifications ensuring a simple graph, one method is an extension of the classical Erd\H{o}s-R\'{e}nyi graph where the edge probabilities are random variables, and the last method starts with a directed random graph which is then modified to a simple undirected graph. All methods are shown to give the correct distribution in the limit of large graph size, but under different assumptions on the degree distribution $F$ and also using different order of operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.