Abstract

The concept of exotic (ordered) configuration spaces of points in a space was proposed by Baryshnikov. He obtained formulas for the (exponential) generating series of their Euler characteristics. We explore unordered analogs of the spaces. Considering a complex quasiprojective variety, we give a formula for the generating series of the classes of these configuration spaces in the Grothendieck ring of complex quasiprojective varieties. We state the result in terms of the natural power structure over this ring. This yields formulas of generating series of additive invariants of configuration spaces like the Hodge–Deligne polynomial and the Euler characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.