Abstract

Random networks are widely used to model complex networks and research their properties. In order to get a good approximation of complex networks encountered in various disciplines of science, the ability to tune various statistical properties of random networks is very important. In this Brief Report we present an algorithm which is able to construct arbitrarily degree-degree correlated networks with adjustable degree-dependent clustering. We verify the algorithm by using empirical networks as input and describe additionally a simple way to fix a degree-dependent clustering function if degree-degree correlations are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.