Abstract
This paper presents a novel, unified approach for generating high-quality datasets for training machine-learned models for real-time security assessment in power systems. Synthetic data generation methods that extrapolate beyond historical data can be inefficient in generating feasible and rare operating conditions (OCs). The proposed approach balances the trade-off between historically relevant OCs and rare but feasible OCs. Unlike conventional methods that rely on historical records or generic sampling, our approach results in datasets that generalise well beyond similar distributions. The proposed approach is validated through experiments on the IEEE 118-bus system, where a decision tree model trained on data generated using our approach achieved 97% accuracy in predicting the security label of rare OCs, outperforming baseline approaches by 41% and 20%. This work is crucial for deploying reliable machine-learned models for real-time security assessment in power systems undergoing decarbonisation and integrating renewable energy sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.