Abstract

The thermo-emf ΔV and thermoelectric current ΔI generated by imposing a temperature gradient alternating at a period of T on a thermoelectric (TE) generator were measured as a function of t, where t is the lapsed time and 1/T was varied from 0 to 1/30 s-1. A TE generator was sandwiched between two Peltier modules connected in series. The alternating temperature gradients were produced by imposing an alternating voltage V on two Peltier modules, where V was varied from 1.0 to 3.7 V. Both ΔV and ΔI generated by the TE generator oscillate at a period of T but their amplitudes tend to increase monotonically with an increase of V. The effective thermo-emf ΔVeff and current ΔIeff calculated from ΔV and ΔI increase abruptly with an increase of 1/T and have a local maximum at 1/T=1/120 or 1/240 s-1. The generating power ΔWeff(=ΔVeffΔIeff) tends to increase proportionally with an increase of input power Winput, owing to the increase in the temperature difference. The rate of ΔWeff to Winput at 1/T=1/240 s-1 reached approximately 3.2 times as large as that obtained for the steady temperature gradient corresponding to 1/T=0 s-1. It was thus found that the generating power of the TE generator operating under the temperature gradient alternating at an optimum period is remarkably increased compared to that of a TE generator working under a conventional steady temperature gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call