Abstract

Spontaneous parametric down-conversion in coupled nonlinear waveguides is a flexible approach for generating tunable path entangled states. We describe a formalism based on the Cayley-Hamilton theorem to compute the quantum states generated by waveguide arrays for arbitrary system parameters. We find that all four Bell states can be generated in directional couplers with non-degenerate photons. Our method enables one to efficiently explore the phase space of waveguide systems and readily assess the robustness of any given state to variations in the system's parameters. We believe it represents a valuable tool for quantum state engineering in coupled waveguide systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.