Abstract

A novel technique is presented for molding and culturing composite 3D cellular constructs within microfluidic channels. The method is based on the use of removable molding polydimethylsiloxane (PDMS) inserts, which allow to selectively and incrementally generate composite 3D constructs featuring different cell types and/or biomaterials, with a high spatial control. The authors generate constructs made of either stacked hydrogels, with uniform horizontal interfaces, or flanked hydrogels with vertical interfaces. The authors also show how this technique can be employed to create custom-shaped endothelial barriers and monolayers directly interfaced with 3D cellular constructs. This method dramatically improves the significance of in vitro 3D biological models, enhancing mimicry and enabling for controlled studies of complex biological districts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.