Abstract
An algorithm is presented for generating finite modular, semimodular, graded, and geometric lattices up to isomorphism. Isomorphic copies are avoided using a combination of the general-purpose graph-isomorphism tool nauty and some optimizations that handle simple cases directly. For modular and semimodular lattices, the algorithm prunes the search tree much earlier than the method of Jipsen and Lawless, leading to a speedup of several orders of magnitude. With this new algorithm modular lattices are counted up to 30 elements, semimodular lattices up to 25 elements, graded lattices up to 21 elements, and geometric lattices up to 34 elements. Some statistics are also provided on the typical shape of small lattices of these types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.