Abstract

Converting CO2 into high-value-added chemicals has been recognized as a promising way to tackle the fossil fuel crisis. Quantum dots (QDs) have been extensively studied for photocatalytic CO2 reduction due to their excellent optoelectronic properties. However, most of the photogenerated charge carriers recombine before they participate in the photocatalytic reaction. It is crucial to regulate the charge carriers to minimize undesired charge recombination, thus, promoting surface photocatalysis. Herein, we report a copper-doped CdS (Cu:CdS) QD photocatalyst for CO2 reduction. Density functional theory simulations and experimental results demonstrate that Cu dopants create intermediate energy levels in CdS QDs that can extend the lifetime of exciton charge carriers. Furthermore, the long-lived charge carriers can be harnessed for the photocatalytic reaction on Cu:CdS QDs. The resultant Cu:CdS QDs exhibited a significantly enhanced photocatalytic activity toward CO2 reduction compared to the pristine CdS QDs. This work highlights the importance of charge regulation in photocatalysts and opens new pathways for the exploration of efficient QD photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.