Abstract

Quantum Computing The development of a practical quantum computer requires universality, scalability, and fault tolerance. Although much progress is being made in circuit platforms in which arrays of qubits are addressed and manipulated individually, scale-up of such systems is experimentally challenging. Asavanant et al. and Larsen et al. explore an alternative route: measurement-based quantum computation, which is a platform based on the generation of large-scale cluster states. As these are optically prepared and easier to handle (one simply performs local measurements on each individual component of the cluster state), such a platform is readily scalable and fault tolerant. The topology of the cluster state ensures that the approach meets the requirements for quantum computation. Science , this issue p. [373][1], p. [369][2] [1]: /lookup/doi/10.1126/science.aay2645 [2]: /lookup/doi/10.1126/science.aay4354

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.