Abstract

Memristors are well suited as artificial nerve synapses owing to its unique memory function. This paper establishes a novel flux-controlled memristor model using hyperbolic function series. By taking the memristor as synapses in a Hopfield neural network (HNN), three memristive HNNs are constructed. These memristive HNNs can generate multi-double-scroll chaotic attractors or grid multi-double-scroll chaotic attractors. The number of double scrolls in the attractors is controlled by the memristor. Equilibrium points analysis further reveals the generation mechanism of grid multi-double-scroll chaotic attractors. Moreover, numerical simulations indicate the existence of complex dynamics in the memristive HNNs, including extreme multistability and amplitude control. An approach to physically realize grid multi-double-scroll chaotic attractors is also given. Finally, an encryption scheme based on the proposed memristive HNN is designed to demonstrate application potential of the attractors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call