Abstract

In this article, we present a brief overview of some of the recent progress made in identifying and generating finite dimensional integrable nonlinear dynamical systems, exhibiting interesting oscillatory and other solution properties, including quantum aspects. Particularly we concentrate on Lienard type nonlinear oscillators and their generalizations and coupled versions. Specific systems include Mathews-Lakshmanan oscillators, modified Emden equations, isochronous oscillators and generalizations. Nonstandard Lagrangian and Hamiltonian formulations of some of these systems are also briefly touched upon. Nonlocal transformations and linearization aspects are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.