Abstract

Data-driven garment animation is a current topic of interest in the computer graphics industry. Existing approaches generally establish the mapping between a single human pose or a temporal pose sequence, and garment deformation, but it is difficult to quickly generate diverse clothed human animations. We address this problem with a method to automatically synthesize dressed human animations with temporal consistency from a specified human motion label. At the heart of our method is a two-stage strategy. Specifically, we first learn a latent space encoding the sequence-level distribution of human motions utilizing a transformer-based conditional variational autoencoder (Transformer-CVAE). Then a garment simulator synthesizes dynamic garment shapes using a transformer encoder–decoder architecture. Since the learned latent space comes from varied human motions, our method can generate a variety of styles of motions given a specific motion label. By means of a novel beginning of sequence (BOS) learning strategy and a self-supervised refinement procedure, our garment simulator is capable of efficiently synthesizing garment deformation sequences corresponding to the generated human motions while maintaining temporal and spatial consistency. We verify our ideas experimentally. This is the first generative model that directly dresses human animation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call