Abstract

Photosystem I complexes from the menB deletion mutant of Synechocystis sp. PCC 6803 were previously wired to a Pt nanoparticle via a molecular wire consisting of 15-(3-methyl-1,4-naphthoquinone-2-yl)]pentadecyl sulfide. In the presence of a sacrificial electron donor and an electron transport mediator, the PS I-NQ(CH2)15S-Pt nanoconstruct generated dihydrogen at a rate of 44.3µmol of H2 mg Chl-1 h-1 during illumination at pH 8.3. The menB deletion strain contains an interruption in the biosynthetic pathway of phylloquinone, which results in the presence of a displaceable plastoquinone-9 in the A1A/A1B sites. The synthesized quinone contains a headgroup identical to the native phylloquinone along with a 15-carbon long tail that is terminated in a thiol. The thiol on the molecular wire is used to bind the Pt nanoparticle. In this short communication, we replaced the Pt nanoparticle with an [FeFe]H2ase variant from Clostridium acetobutylicum that contains an exposed iron on the distal [4Fe-4S] cluster afforded by mutating the surface exposed Cys97 residue to Gly. The thiol on the molecular wire is then used to coordinate the corner iron atom of the iron-sulfur cluster. When all three components are combined and illuminated in the presence of a sacrificial electron donor and an electron transport mediator, the PS I-NQ(CH2)15S-[FeFe]H2ase nanoconstruct generated dihydrogen at a rate of 50.3 ± 9.96μmol of H2 mg Chl-1 h-1 during illumination at pH 8.3. This successful in vitro experiment sets the stage for assembling a PS I-NQ(CH2)15S-[FeFe]H2ase nanoconstruct in vivo in the menB mutant of Synechocystis sp. PCC 6803.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.