Abstract

Cure rate models are survival models characterized by improper survivor distributions which occur when the cumulative distribution function, say F, of the survival times does not sum up to 1 (i.e. F(+∞)<1). The first objective of this paper is to provide a general approach to generate data from any improper distribution. An application to times to event data randomly drawn from improper distributions with proportional hazards is investigated using the semi-parametric proportional hazards model with cure obtained as a special case of the nonlinear transformation models in [Tsodikov, Semiparametric models: A generalized self-consistency approach, J. R. Stat. Soc. Ser. B 65 (2003), pp. 759–774]. The second objective of this paper is to show by simulations that the bias, the standard error and the mean square error of the maximum partial likelihood (PL) estimator of the hazard ratio as well as the statistical power based on the PL estimator strongly depend on the proportion of subjects in the whole population who will never experience the event of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.