Abstract
ABSTRACTThis article describes a new algorithm for generating correlation matrices with specified eigenvalues. The algorithm uses the method of alternating projections (MAP) that was first described by Neumann. The MAP algorithm for generating correlation matrices is both easy to understand and to program in higher-level computer languages, making this method accessible to applied researchers with no formal training in advanced mathematics. Simulations indicate that the new algorithm has excellent convergence properties. Correlation matrices with specified eigenvalues can be profitably used in Monte Carlo research in statistics, psychometrics, computer science, and related disciplines. To encourage such use, R code (R Core Team) for implementing the algorithm is provided in the supplementary material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.