Abstract

In the context of recreational routing, the problem of finding a route which starts and ends in the same location (while achieving a length between specified upper and lower boundaries) is a common task, especially for tourists or cyclists who want to exercise. The topic of finding a tour between a specified starting and ending location while minimizing one or multiple criteria is well covered in literature. In contrast to this, the route planning task in which a pleasant tour with length between a maximum and a minimum boundary needs to be found is relatively underexplored. In this paper, we provide a formal definition of this problem, taking into account the existing literature on which route attributes influence cyclists in their route choice. We show that the resulting problem is NP-hard and devise a branch-and-bound algorithm that is able to provide a bound on the quality of the best solution in pseudo-polynomial time. Furthermore, we also create an efficient heuristic to tackle the problem and we compare the quality of the solutions that are generated by the heuristic with the bounds provided by the branch-and-bound algorithm. Also, we thoroughly discuss the complexity and running time of the heuristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.