Abstract

Predicting structures of organic molecular cocrystals is a challenging task when considering the immense number of possible intermolecular orientations. Use of the Shannon information entropy, constructed from an intermolecular orientational spatial distribution function, to drive a search for crystal structures via enhanced molecular dynamics can be an efficient way to map out a landscape of putative polymorphs. Here, the Shannon entropy is used to generate a set of collective variables for differentiating polymorphs of a 1:1 cocrystal of resorcinol and urea. We show that driven adiabatic free energy dynamics, a particular enhanced-sampling approach, combined with these entropy variables, can transform the stable phase into alternate polymorphs. Density functional theory calculations confirm that a structure obtained from the enhanced molecular dynamics is stable at pressures above 1 GPa. We thus show that enhanced sampling should be considered an integral component of crystal structure searching protocols for systems with multiple independent molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call