Abstract
This paper proposes and investigates a novel way of combining machine learning and heuristic search to improve domain-independent planning. On the learning side, we use learning to predict the plan cost of a good solution for a given instance. On the planning side, we propose a bound-sensitive heuristic function that exploits such a prediction in a state-space planner. Our function combines the input prediction (derived inductively) with some pieces of information gathered during search (derived deductively). As the prediction can sometimes be grossly inaccurate, the function also provides means to recognise when the provided information is actually misguiding the search. Our experimental analysis demonstrates the usefulness of the proposed approach in a standard heuristic best-first search schema.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.