Abstract

Abstract Deep neural networks have shown effectiveness in many applications, however, in regulated applications like automotive or medicine, quality guarantees are required. Thus, it is important to understand the robustness of the solutions to perturbations in the input space. In order to identify the vulnerability of a trained classification model and evaluate the effect of different perturbations in the input on the output class, two different methods to generate adversarial examples were implemented. The adversarial images created were developed into a robustness index to monitor the training state and safety of a convolutional neural network model. In the future work, some generated adversarial images will be included into the training phase to improve the model robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.