Abstract

An optical field with sub-nm confinement is essential for exploring atomic- or molecular-level light-matter interaction. While such fields demonstrated so far have typically point-like cross-sections, an optical field having a higher-dimensional cross-section may offer higher flexibility and/or efficiency in applications. Here, we propose generating a nanoscale blade-like optical field in a coupled nanofiber pair (CNP) with a 1-nm-width central slit. Based on a strong mode coupling-enabled slit waveguide mode, a sub-nm-thickness blade-like optical field can be generated with a cross-section down to ∼0.28 nm×38 nm at 1550 nm wavelength (i.e., a thickness of ∼λ0/5000) and a peak-to-background intensity ratio (PBR) higher than 20 dB. The slit waveguide mode of the CNP can be launched from one of the two nanofibers that are connected to a standard optical fiber via an adiabatical fiber taper, in which a fundamental waveguide mode of the fiber can be converted into a high-purity slit mode with high efficiency (>98%) within a CNP length of less than 10 μm at 1550 nm wavelength. The wavelength-dependent behaviors and group velocity dispersion in mode converting processes are also investigated, showing that such a CNP-based design is also suitable for broadband and ultrafast pulsed operation. Our results may open up new opportunities for studying light-matter interaction down to the sub-nm scale, as well as for exploring ultra-high-resolution optical technology ranging from super-resolution nanoscopy to chemical bond manipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call