Abstract

In this paper, we fill a void between information theoretic security and practical coding over the Gaussian wiretap channel using a three-stage encoder/decoder technique. Security is measured using Kullback–Leibler divergence and resolvability techniques along with a limited number of practical assumptions regarding the eavesdropper’s decoder. The results specify a general coding recipe for obtaining both secure and reliable communications over the Gaussian wiretap channel, and one specific set of concatenated codes is presented as a test case for the sake of providing simulation-based evaluation of security and reliability over the network. It is shown that there exists a threshold in signal-to-noise ratio (SNR) over a Gaussian channel, such that receivers experiencing SNR below the threshold have no practical hope of receiving information about the message when the three-stage coding technique is applied. Results further indicate that the two innermost encoding stages successfully approximate a binary symmetric channel, allowing the outermost encoding stage (e.g., a wiretap code) to focus solely on secrecy coding over this approximated channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.